
28
ADDITIONAL TOPICS

This is not the end. It is not even the beginning of the end. But it is, perhaps, the

end of the beginning.

—Winston Churchill

In this book we have concentrated on relational database systems and discussed several

fundamental issues in detail. However, our coverage of the database area, and indeed

even the relational database area, is far from exhaustive. In this chapter we look

briefly at several topics that we did not cover, with the goal of giving the reader some

perspective and indicating directions for further study.

We begin with a discussion of advanced transaction processing concepts in Section 28.1.

We discuss integrated access to data from multiple databases in Section 28.2, and touch

upon mobile applications that connect to databases in Section 28.3. We consider the

impact of increasingly larger main memory sizes in Section 28.4. We discuss multimedia

databases in Section 28.5, geographic information systems in Section 28.6, and sequence

data in Section 28.7. We conclude with a look at information visualization in Section

28.8.

The applications covered in this chapter are pushing the limits of currently available

database technology and are motivating the development of new techniques. As even

our brief coverage indicates, there is much work ahead for the database field!

28.1 ADVANCED TRANSACTION PROCESSING

The concept of a transaction has wide applicability for a variety of distributed comput-

ing tasks, such as airline reservations, inventory management, and electronic commerce.

28.1.1 Transaction Processing Monitors

Complex applications are often built on top of several resource managers, such

as database management systems, operating systems, user interfaces, and messaging

software. A transaction processing monitor glues together the services of several

resource managers and provides application programmers with a uniform interface for

822



Additional Topics 823

developing transactions with the ACID properties. In addition to providing a uniform

interface to the services of different resource managers, a TP monitor also routes

transactions to the appropriate resource managers. Finally, a TP monitor ensures that

an application behaves as a transaction by implementing concurrency control, logging,

and recovery functions, and by exploiting the transaction processing capabilities of the

underlying resource managers.

TP monitors are used in environments where applications require advanced features

such as access to multiple resource managers; sophisticated request routing (also called

workflow management); assigning priorities to transactions and doing priority-

based load-balancing across servers; and so on. A DBMS provides many of the func-

tions supported by a TP monitor in addition to processing queries and database up-

dates efficiently. A DBMS is appropriate for environments where the wealth of trans-

action management capabilities provided by a TP monitor is not necessary and, in

particular, where very high scalability (with respect to transaction processing activ-

ity) and interoperability are not essential.

The transaction processing capabilities of database systems are improving continually.

For example, many vendors offer distributed DBMS products today in which a transac-

tion can execute across several resource managers, each of which is a DBMS. Currently,

all the DBMSs must be from the same vendor; however, as transaction-oriented services

from different vendors become more standardized, distributed, heterogeneous DBMSs

should become available. Eventually, perhaps, the functions of current TP monitors

will also be available in many DBMSs; for now, TP monitors provide essential infras-

tructure for high-end transaction processing environments.

28.1.2 New Transaction Models

Consider an application such as computer-aided design, in which users retrieve large

design objects from a database and interactively analyze and modify them. Each

transaction takes a long time—minutes or even hours, whereas the TPC benchmark

transactions take under a millisecond—and holding locks this long affects performance.

Further, if a crash occurs, undoing an active transaction completely is unsatisfactory,

since considerable user effort may be lost. Ideally we want to be able to restore most

of the actions of an active transaction and resume execution. Finally, if several users

are concurrently developing a design, they may want to see changes being made by

others without waiting until the end of the transaction that changes the data.

To address the needs of long-duration activities, several refinements of the transaction

concept have been proposed. The basic idea is to treat each transaction as a collection

of related subtransactions. Subtransactions can acquire locks, and the changes made

by a subtransaction become visible to other transactions after the subtransaction ends

(and before the main transaction of which it is a part commits). In multilevel trans-



824 Chapter 28

actions, locks held by a subtransaction are released when the subtransaction ends.

In nested transactions, locks held by a subtransaction are assigned to the parent

(sub)transaction when the subtransaction ends. These refinements to the transaction

concept have a significant effect on concurrency control and recovery algorithms.

28.1.3 Real-Time DBMSs

Some transactions must be executed within a user-specified deadline. A hard dead-

line means the value of the transaction is zero after the deadline. For example, in a

DBMS designed to record bets on horse races, a transaction placing a bet is worthless

once the race begins. Such a transaction should not be executed; the bet should not

be placed. A soft deadline means the value of the transaction decreases after the

deadline, eventually going to zero. For example, in a DBMS designed to monitor some

activity (e.g., a complex reactor), a transaction that looks up the current reading of a

sensor must be executed within a short time, say, one second. The longer it takes to

execute the transaction, the less useful the reading becomes. In a real-time DBMS, the

goal is to maximize the value of executed transactions, and the DBMS must prioritize

transactions, taking their deadlines into account.

28.2 INTEGRATED ACCESS TO MULTIPLE DATA SOURCES

As databases proliferate, users want to access data from more than one source. For

example, if several travel agents market their travel packages through the Web, cus-

tomers would like to look at packages from different agents and compare them. A

more traditional example is that large organizations typically have several databases,

created (and maintained) by different divisions such as Sales, Production, and Pur-

chasing. While these databases contain much common information, determining the

exact relationship between tables in different databases can be a complicated prob-

lem. For example, prices in one database might be in dollars per dozen items, while

prices in another database might be in dollars per item. The development of XML

DTDs (see Section 22.3.3) offers the promise that such semantic mismatches can be

avoided if all parties conform to a single standard DTD. However, there are many

legacy databases and most domains still do not have agreed-upon DTDs; the problem

of semantic mismatches will be frequently encountered for the foreseeable future.

Semantic mismatches can be resolved and hidden from users by defining relational

views over the tables from the two databases. Defining a collection of views to give

a group of users a uniform presentation of relevant data from multiple databases is

called semantic integration. Creating views that mask semantic mismatches in a

natural manner is a difficult task and has been widely studied. In practice, the task

is made harder by the fact that the schemas of existing databases are often poorly



Additional Topics 825

documented; thus, it is difficult to even understand the meaning of rows in existing

tables, let alone define unifying views across several tables from different databases.

If the underlying databases are managed using different DBMSs, as is often the case,

some kind of ‘middleware’ must be used to evaluate queries over the integrating views,

retrieving data at query execution time by using protocols such as Open Database Con-

nectivity (ODBC) to give each underlying database a uniform interface, as discussed

in Chapter 5. Alternatively, the integrating views can be materialized and stored in

a data warehouse, as discussed in Chapter 23. Queries can then be executed over the

warehoused data without accessing the source DBMSs at run-time.

28.3 MOBILE DATABASES

The availability of portable computers and wireless communications has created a new

breed of nomadic database users. At one level these users are simply accessing a

database through a network, which is similar to distributed DBMSs. At another level

the network as well as data and user characteristics now have several novel properties,

which affect basic assumptions in many components of a DBMS, including the query

engine, transaction manager, and recovery manager;

Users are connected through a wireless link whose bandwidth is ten times less

than Ethernet and 100 times less than ATM networks. Communication costs are

therefore significantly higher in proportion to I/O and CPU costs.

Users’ locations are constantly changing, and mobile computers have a limited

battery life. Therefore, the true communication costs reflect connection time and

battery usage in addition to bytes transferred, and change constantly depending

on location. Data is frequently replicated to minimize the cost of accessing it from

different locations.

As a user moves around, data could be accessed from multiple database servers

within a single transaction. The likelihood of losing connections is also much

greater than in a traditional network. Centralized transaction management may

therefore be impractical, especially if some data is resident at the mobile comput-

ers. We may in fact have to give up on ACID transactions and develop alternative

notions of consistency for user programs.

28.4 MAIN MEMORY DATABASES

The price of main memory is now low enough that we can buy enough main memory

to hold the entire database for many applications; with 64-bit addressing, modern

CPUs also have very large address spaces. Some commercial systems now have several

gigabytes of main memory. This shift prompts a reexamination of some basic DBMS



826 Chapter 28

design decisions, since disk accesses no longer dominate processing time for a memory-

resident database:

Main memory does not survive system crashes, and so we still have to implement

logging and recovery to ensure transaction atomicity and durability. Log records

must be written to stable storage at commit time, and this process could become

a bottleneck. To minimize this problem, rather than commit each transaction as

it completes, we can collect completed transactions and commit them in batches;

this is called group commit. Recovery algorithms can also be optimized since

pages rarely have to be written out to make room for other pages.

The implementation of in-memory operations has to be optimized carefully since

disk accesses are no longer the limiting factor for performance.

A new criterion must be considered while optimizing queries, namely the amount

of space required to execute a plan. It is important to minimize the space overhead

because exceeding available physical memory would lead to swapping pages to disk

(through the operating system’s virtual memory mechanisms), greatly slowing

down execution.

Page-oriented data structures become less important (since pages are no longer the

unit of data retrieval), and clustering is not important (since the cost of accessing

any region of main memory is uniform).

28.5 MULTIMEDIA DATABASES

In an object-relational DBMS, users can define ADTs with appropriate methods, which

is an improvement over an RDBMS. Nonetheless, supporting just ADTs falls short of

what is required to deal with very large collections of multimedia objects, including

audio, images, free text, text marked up in HTML or variants, sequence data, and

videos. Illustrative applications include NASA’s EOS project, which aims to create a

repository of satellite imagery, the Human Genome project, which is creating databases

of genetic information such as GenBank, and NSF/DARPA’s Digital Libraries project,

which aims to put entire libraries into database systems and then make them accessible

through computer networks. Industrial applications such as collaborative development

of engineering designs also require multimedia database management, and are being

addressed by several vendors.

We outline some applications and challenges in this area:

Content-based retrieval: Users must be able to specify selection conditions

based on the contents of multimedia objects. For example, users may search for

images using queries such as: “Find all images that are similar to this image” and

“Find all images that contain at least three airplanes.” As images are inserted into



Additional Topics 827

the database, the DBMS must analyze them and automatically extract features

that will help answer such content-based queries. This information can then be

used to search for images that satisfy a given query, as discussed in Chapter 26.

As another example, users would like to search for documents of interest using

information retrieval techniques and keyword searches. Vendors are moving to-

wards incorporating such techniques into DBMS products. It is still not clear how

these domain-specific retrieval and search techniques can be combined effectively

with traditional DBMS queries. Research into abstract data types and ORDBMS

query processing has provided a starting point, but more work is needed.

Managing repositories of large objects: Traditionally, DBMSs have concen-

trated on tables that contain a large number of tuples, each of which is relatively

small. Once multimedia objects such as images, sound clips, and videos are stored

in a database, individual objects of very large size have to be handled efficiently.

For example, compression techniques must be carefully integrated into the DBMS

environment. As another example, distributed DBMSs must develop techniques

to efficiently retrieve such objects. Retrieval of multimedia objects in a distributed

system has been addressed in limited contexts, such as client-server systems, but

in general remains a difficult problem.

Video-on-demand: Many companies want to provide video-on-demand services

that enable users to dial into a server and request a particular video. The video

must then be delivered to the user’s computer in real time, reliably and inex-

pensively. Ideally, users must be able to perform familiar VCR functions such as

fast-forward and reverse. From a database perspective, the server has to contend

with specialized real-time constraints; video delivery rates must be synchronized

at the server and at the client, taking into account the characteristics of the com-

munication network.

28.6 GEOGRAPHIC INFORMATION SYSTEMS

Geographic Information Systems (GIS) contain spatial information about cities,

states, countries, streets, highways, lakes, rivers, and other geographical features, and

support applications to combine such spatial information with non-spatial data. As

discussed in Chapter 26, spatial data is stored in either raster or vector formats. In

addition, there is often a temporal dimension, as when we measure rainfall at several

locations over time. An important issue with spatial data sets is how to integrate data

from multiple sources, since each source may record data using a different coordinate

system to identify locations.

Now let us consider how spatial data in a GIS is analyzed. Spatial information is most

naturally thought of as being overlaid on maps. Typical queries include “What cities

lie on I-94 between Madison and Chicago?” and “What is the shortest route from

Madison to St. Louis?” These kinds of queries can be addressed using the techniques



828 Chapter 28

discussed in Chapter 26. An emerging application is in-vehicle navigation aids. With

Global Positioning Systems (GPS) technology, a car’s location can be pinpointed, and

by accessing a database of local maps, a driver can receive directions from his or her

current location to a desired destination; this application also involves mobile database

access!

In addition, many applications involve interpolating measurements at certain locations

across an entire region to obtain a model, and combining overlapping models. For ex-

ample, if we have measured rainfall at certain locations, we can use the TIN approach

to triangulate the region with the locations at which we have measurements being the

vertices of the triangles. Then, we use some form of interpolation to estimate the

rainfall at points within triangles. Interpolation, triangulation, map overlays, visual-

izations of spatial data, and many other domain-specific operations are supported in

GIS products such as ESRI Systems’ ARC-Info. Thus, while spatial query processing

techniques as discussed in Chapter 26 are an important part of a GIS product, con-

siderable additional functionality must be incorporated as well. How best to extend

ORDBMS systems with this additional functionality is an important problem yet to

be resolved. Agreeing upon standards for data representation formats and coordinate

systems is another major challenge facing the field.

28.7 TEMPORAL AND SEQUENCE DATABASES

Currently available DBMSs provide little support for queries over ordered collections

of records, or sequences, and over temporal data. Typical sequence queries include

“Find the weekly moving average of the Dow Jones Industrial Average,” and “Find the

first five consecutively increasing temperature readings” (from a trace of temperature

observations). Such queries can be easily expressed and often efficiently executed by

systems that support query languages designed for sequences. Some commercial SQL

systems now support such SQL extensions.

The first example is also a temporal query. However, temporal queries involve more

than just record ordering. For example, consider the following query: “Find the longest

interval in which the same person managed two different departments.” If the period

during which a given person managed a department is indicated by two fields from and

to, we have to reason about a collection of intervals, rather than a sequence of records.

Further, temporal queries require the DBMS to be aware of the anomalies associated

with calendars (such as leap years). Temporal extensions are likely to be incorporated

in future versions of the SQL standard.

A distinct and important class of sequence data consists of DNA sequences, which are

being generated at a rapid pace by the biological community. These are in fact closer

to sequences of characters in text than to time sequences as in the above examples.

The field of biological information management and analysis has become very popular



Additional Topics 829

in recent years, and is called bioinformatics. Biological data, such as DNA sequence

data, is characterized by complex structure and numerous relationships among data

elements, many overlapping and incomplete or erroneous data fragments (because ex-

perimentally collected data from several groups, often working on related problems,

is stored in the databases), a need to frequently change the database schema itself as

new kinds of relationships in the data are discovered, and the need to maintain several

versions of data for archival and reference.

28.8 INFORMATION VISUALIZATION

As computers become faster and main memory becomes cheaper, it becomes increas-

ingly feasible to create visual presentations of data, rather than just text-based reports.

Data visualization makes it easier for users to understand the information in large

complex datasets. The challenge here is to make it easy for users to develop visual

presentation of their data and to interactively query such presentations. Although a

number of data visualization tools are available, efficient visualization of large datasets

presents many challenges.

The need for visualization is especially important in the context of decision support;

when confronted with large quantities of high-dimensional data and various kinds of

data summaries produced by using analysis tools such as SQL, OLAP, and data mining

algorithms, the information can be overwhelming. Visualizing the data, together with

the generated summaries, can be a powerful way to sift through this information and

spot interesting trends or patterns. The human eye, after all, is very good at finding

patterns. A good framework for data mining must combine analytic tools to process

data, and bring out latent anomalies or trends, with a visualization environment in

which a user can notice these patterns and interactively drill down to the original data

for further analysis.

28.9 SUMMARY

The database area continues to grow vigorously, both in terms of technology and in

terms of applications. The fundamental reason for this growth is that the amount of

information stored and processed using computers is growing rapidly. Regardless of

the nature of the data and its intended applications, users need database management

systems and their services (concurrent access, crash recovery, easy and efficient query-

ing, etc.) as the volume of data increases. As the range of applications is broadened,

however, some shortcomings of current DBMSs become serious limitations. These

problems are being actively studied in the database research community.

The coverage in this book provides a good introduction, but is not intended to cover

all aspects of database systems. Ample material is available for further study, as this



830 Chapter 28

chapter illustrates, and we hope that the reader is motivated to pursue the leads in

the bibliography. Bon voyage!

BIBLIOGRAPHIC NOTES

[288] contains a comprehensive treatment of all aspects of transaction processing. An intro-

ductory textbook treatment can be found in [77]. See [204] for several papers that describe new

transaction models for nontraditional applications such as CAD/CAM. [1, 668, 502, 607, 622]

are some of the many papers on real-time databases.

Determining which entities are the same across different databases is a difficult problem;

it is an example of a semantic mismatch. Resolving such mismatches has been addressed

in many papers, including [362, 412, 558, 576]. [329] is an overview of theoretical work in

this area. Also see the bibliographic notes for Chapter 21 for references to related work on

multidatabases, and see the notes for Chapter 2 for references to work on view integration.

[260] is an early paper on main memory databases. [345, 89] describe the Dali main memory

storage manager. [359] surveys visualization idioms designed for large databases, and [291]

discusses visualization for data mining.

Visualization systems for databases include DataSpace [515], DEVise [424], IVEE [23], the

Mineset suite from SGI, Tioga [27], and VisDB [358]. In addition, a number of general tools

are available for data visualization.

Querying text repositories has been studied extensively in information retrieval; see [545] for

a recent survey. This topic has generated considerable interest in the database community

recently because of the widespread use of the Web, which contains many text sources. In

particular, HTML documents have some structure if we interpret links as edges in a graph.

Such documents are examples of semistructured data; see [2] for a good overview. Recent

papers on queries over the Web include [2, 384, 457, 493].

See [501] for a survey of multimedia issues in database management. There has been much

recent interest in database issues in a mobile computing environment, for example, [327, 337].

See [334] for a collection of articles on this subject. [639] contains several articles that cover

all aspects of temporal databases. The use of constraints in databases has been actively

investigated in recent years; [356] is a good overview. Geographic Information Systems have

also been studied extensively; [511] describes the Paradise system, which is notable for its

scalability.

The book [695] contains detailed discussions of temporal databases (including the TSQL2

language, which is influencing the SQL standard), spatial and multimedia databases, and

uncertainty in databases. Another SQL extension to query sequence data, called SRQL, is

proposed in [532].


